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Fisheries policy inherently relies on an explicit definition of management boundaries that delineate the spatial extent over which stocks are
assessed and regulations are implemented. However, management boundaries tend to be static and determined by politically negotiated or
historically identified population (or multi-species) units, which create a potential disconnect with underlying, dynamic population structure.
The consequences of incoherent management and population or stock boundaries were explored through the application of a two-area spa-
tial simulation–estimation framework. Results highlight the importance of aligning management assessment areas with underlying population
structure and processes, especially when fishing mortality is disproportionate to vulnerable biomass among management areas, demographic
parameters (growth and maturity) are not homogenous within management areas, and connectivity (via recruitment or movement)
unknowingly exists among management areas. Bias and risk were greater for assessments that incorrectly span multiple population segments
(PSs) compared to assessments that cover a subset of a PS, and these results were exacerbated when there was connectivity between PSs.
Directed studies and due consideration of critical PSs, spatially explicit models, and dynamic management options that help align manage-
ment and population boundaries would likely reduce estimation biases and management risk, as would closely coordinated management
that functions across population boundaries.
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Introduction
Spatial structure is a defining feature guiding the population dy-

namics and sustainable harvest levels of marine resources

(Fogarty and Botsford, 2007; Cadrin and Secor, 2009; Goethel

et al., 2011). Individual biological responses to variation in ocean-

ographic conditions (Pinsky et al., 2013; Tolimieri et al., 2018;

Malick et al., 2020), harvest pressure (Fu and Fanning, 2004;

Cope and Punt, 2011, Bosley et al., 2019), regulatory measures

(Hilborn et al., 2004; McGilliard et al., 2015), and community dy-

namics (Holt, 1997; Cottenie, 2005; Thorson et al., 2017) create

complex, non-stationary spatiotemporal demographic patterns

that can influence management success (e.g. achieving a desired

harvest level or ecosystem service). In particular, spatial dimen-

sionality, including the explicit definition and treatment of geo-

graphic boundaries, is a key component contributing to the

success of spatial management procedures because most stock as-

sessment models rely on panmictic unit stock assumptions

(Cadrin, 2020). Therefore, ensuring that assessment and biologi-

cal boundaries coincide is an implicit and critical assumption of

any stock assessment application. Adverse and unintended out-

comes have been documented when existing population structure

and management unit boundaries have inconsistent spatial

dimensions (Cope and Punt, 2011; Hintzen et al., 2015; Kerr

et al., 2017). A prudent question that remains is how inconsistent

they must be to create consequences for management across dif-

ferent sources and extents of spatial structure (drivers of spatial

heterogeneity such as maturity, growth, or selectivity patterns as

well as connectivity dynamics). Ultimately, spatial management

procedures should consider the population components (e.g.

spawning contingents or harvest stock) of societal interest that re-

quire management action, given fishery objectives and associated

risk profiles. The risks of ignoring spatial population structure, or

incorrectly identifying it, can be high when it comes to providing

management advice (Hutchinson, 2008; Ying et al., 2011;

Ciannelli et al., 2013; Goethel and Berger, 2017).

Incoherence between the scale at which ecological processes

function and the domain over which management acts can arise

primarily in two ways. First, management boundaries can be de-

fined at broad scales with trivial current or historical ecological

relevance such as those based on political borders or boundaries

of convenience. Second, demarcations that were originally ecolog-

ically driven can become distorted due to dynamic oceanographic

conditions and non-stationary demography. Non-stationary pat-

terns in oceanographic conditions can influence stock dynamics

through changes in recruitment, growth, and maturity, as well as

movement patterns of fish resulting in changes in fishery selectiv-

ity (or availability) and catchability (Fulton, 2011; Szuwalski and

Hollowed, 2016; Kapur et al., 2020; Malick et al., 2020). In some

cases, distributional shifts across existing management bound-

aries can propagate risk associated with localized depletion, pop-

ulation resilience, and vulnerability to overharvest (Kerr et al.,

2010; Ciannelli et al., 2013). Even under the most responsive

adaptive management procedures, boundary incoherence can

persist due to inherent lag-times with data collection, scientific

understanding, and policy implementation (King and McFarlane,

2006; Loehle, 2006).

Methodological advancements in stock assessment continue to

provide new pathways for incorporating spatial population dy-

namics into decision-making procedures (Goethel et al., 2011;

Berger et al., 2017a; Punt, 2019; Cao et al., 2020). However,

management unit boundaries that define the spatial extent over

which regulations act tend to be static and are often determined

by convenient or legacy management unit definitions that may

not reflect the current biological population unit (Stephenson,

1999; Smedbol and Stephenson, 2001; Reiss et al., 2009). The

growing appreciation for the dynamic nature of marine fish pop-

ulations (Booth, 2000; Pikitch et al., 2004; Berger et al., 2017b)

thus generates concern about the implications of misaligned

management boundaries (herein, management boundaries are

treated as equivalent to stock assessment boundaries) with exist-

ing population structure as well as the utility of static boundaries

given the dynamic nature of a stock, especially when forecasted to

change (e.g. due to climate). This is particularly true for heavily

exploited species because ecological disturbances (e.g. fishing)

tend to increase variability in abundance (Hsieh et al., 2006;

Shelton and Mangel, 2011) and can produce heterogeneous pat-

terns when applied to patches (e.g. non-uniform fishing effort)

across a spatial domain (Turner, 1989; Wiens, 1995; Fraterrigo

and Rusak, 2008). Furthermore, management units that split

populations into separately assessed stocks can result in biased

management quantities (e.g. reference points) when recruitment

and movement dynamics are not well understood (Ying et al.,

2011; McGilliard et al., 2015; Goethel and Berger, 2017; Bosley

et al., 2019).

Recent studies have produced mounting scientific evidence to

classify “best practice” approaches to identify and incorporate

spatial structure into management procedures (Berger et al.,

2017b; Punt, 2019; Cadrin, 2020), resulting in a renewed appreci-

ation of spatiotemporal population dynamics (Berger et al.,

2017a) when developing management advice (e.g. Van Beveren

et al., 2019; Cadrin et al., 2019; Cao et al., 2020). Studies have

also specifically looked at the influence of misaligned biological

and management units as a result of genetic structure (Reiss

et al., 2009), the amount or type of data available to identify stock

structure along with institutional inertia countering management

unit boundary change (Kerr et al., 2017), and the interaction be-

tween stock assessment and management units when spatially

varying catch histories drive stock structure (Fu and Fanning,

2004; Cope and Punt, 2011). Cope and Punt (2011), for example

used a simulation experiment to show that regional catch histo-

ries were important to track when management required regional

resolution, confirming the potential risk for local depletion even

when stock-wide terminal biomass estimates are unbiased.

However, a study has yet to be undertaken that broadly explores

the management implications associated with incoherent popula-

tion and management boundaries across wide range of factors

that generate spatial stock structure.

In this article, the bias and risk of misinformed management

caused by boundary incoherence between population segments

(PSs) and management unit boundaries were explored for several

of the primary biological and fishery pathways that produce spa-

tial stock structure (i.e. unique phenotypic features). Specifically,

heterogeneous PSs resulting from spatial differences in maturity,

growth, selectivity, recruitment, and movement, as well as inter-

actions among these pathways, were investigated. Three study

objectives were evaluated using a coupled operating and estima-

tion model (EM) simulation framework, where EMs (or stock

assessments) were informed by data incoherent with the underly-

ing PSs. Simulations evaluated how well EMs captured regional

dynamics relative to the (true) spatially heterogeneous PSs (i.e.

ecological perspective; objective 1), stock assessment areas (AAs)
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(i.e. estimation perspective; objective 2), and stock assessment

sub-areas created by incoherent boundaries (harvest management

perspective; objective 3). Model performance was enumerated for

each simulation scenario in terms of estimation bias and risk pro-

files relative to coherent boundary (spatial alignment) and inco-

herent boundary (spatial misalignment) areas. Results provide

perspective into the potential consequences of misaligning man-

agement boundaries with spatial population structure when pan-

mictic, closed-population stock assessment models are used to

provide management advice.

Methods
A generalized simulation–estimation framework, designed to

broadly evaluate and enhance the use of spatial processes in stock

assessment (Goethel and Berger, 2017; Bosley et al., 2019; Goethel

et al., 2019), was adapted to address study objectives (simulation

and data generating code available on github: https://github.com/

KateBoz/SPASAM/tree/master/Management_Boundaries, last

accessed 24 June 2020; see Goethel et al., 2019 for a comprehen-

sive treatment of this framework). An operating model (OM)

was developed using key parameter values (Table 1) to repre-

sent the “true” population dynamics of a generic fish species

with the general characteristics of Atlantic herring Clupea hare-

ngus in the US Northwest Atlantic Ocean [NEFSC (Northeast

Fisheries Science Center), 2018]. Data were generated from the

OM for use in an EM that made incorrect assumptions about

the spatial boundaries of the population represented in the

OM. This framework defined the analytical construct from

which alternative stock structure scenarios were examined and

summary performance metrics were enumerated.

Specific terms are used throughout the paper to describe

processes influencing spatial structure and to define the dimen-

sions of spatial units. The term spatial heterogeneity refers to

the source of area-specific differences in biological or fishery

parameters used in OMs, while connectivity refers to the mecha-

nisms governing how area-specific populations interact. The

term boundary incoherence describes the spatial misalignment

of population and management/assessment boundaries between

operating and EM areas (see Figure 1). PS is a semi-discrete,

phenotypic group within the population bounded by one or

more sources of spatial heterogeneity and corresponds to the

true OM areas. AAs are delineated by EMs that are either spa-

tially coherent or incoherent with OM areas. Assessment sub-

areas are further delineated by the intersection (sensu set the-

ory) between AAs and PSs (Figure 1).

Study design
Simulation scenarios were developed that differed by the source

of spatial heterogeneity between areas (due to age-specific matu-

rity ogive, scenario M; growth, G; and selectivity, S), connectivity

dynamics (recruitment and initial abundance-at-age apportion-

ment, Rec; and movement, Mov), and the degree of boundary in-

coherence in the EM with respect to the boundary definition in

the OM. The population was defined by two areas (area 1 and

area 2) throughout the study to ensure the tractability of results,

particularly when spatial heterogeneity was driven by multiple

sources. Different sources of spatial heterogeneity were explored

either in isolation (i.e. only one source differed between areas) or

in combination (M, G, and S; or MGS), as well as with and with-

out connectivity due to recruitment apportionment (Rec) or

movement (Mov) between areas. When applied in combination,

spatial differences were selected so area 1 had larger weights, and

higher maturity and selectivity at age than area 2 (i.e. more pro-

ductive), such that a faster growing fish would likely mature and

become selected to fishing gear sooner than a slower growing fish

(de Roos et al., 2006). Simulations used a “base” level of hetero-

geneity (10%) between areas for maturity and growth (i.e. change

in area 1 age-specific values relative to area 2) and applied re-

gional trawl fishery selectivity patterns based on herring in the

northwest Atlantic (see Figure 2). A set of sensitivity scenarios

were also explored that increased the level of spatial heterogeneity

(20, 35, and 50%) for maturity and growth.

Scenarios that included connectivity between areas applied dif-

ferent recruitment and initial abundance-at-age apportionment

values (hereafter referred to as recruitment apportionment),

movement matrices, or both to OM areas. One of the three levels

of recruitment apportionment (Rec) was examined by area (area

1:area 2): 50:50, 60:40, or 80:20. One of the five levels of unidirec-

tional movement (Mov) were examined (emigration rates for area

1:area 2): 0:0, 10:0, 25:0, 0:10, or 0:25. A less than full factorial

study design was implemented to reduce the number of scenarios

to a tractable number while sacrificing little in terms of inference.

As such, each level of recruitment apportionment (Rec) and

movement rate (Mov) was evaluated with all three forms of spa-

tial heterogeneity at once (MGS; see Table 2). Furthermore, a

complementary set of scenarios where area 2 was more produc-

tive than area 1 (the reverse of the default setting) was removed

from the study design, effectively halving the total number of

simulation scenarios, because initial model runs indicated that

this choice had negligible impact on results.

Data were generated from each area of the OM to inform area-

specific EMs that assumed single-area, panmictic populations

that were either spatially coherent (aligned) or incoherent (mis-

aligned) with the OM (Figure 1). The degree of boundary inco-

herence in the EM ranged from no boundary misspecification to

a relatively high percent of misalignment (i.e. 0, 10, 20, 35, and

50%; see Figure 2). The degree of boundary incoherence between

the areas was specified by a fraction, p, used to assign area-

specific data from the OMs to the two misaligned EMs (see Data

Generation for more details). This amounted to proportionally

less data for EM1 relative to OM1 by p (i.e. data from the same PS

just less data points), and the incorrect inclusion of the remaining

OM1 data with OM2 data for EM2 (i.e. weighted average, relative

to p, of data from disparate PSs). This design resulted in EM1

having a boundary that was proportionally too small, and EM2

Table 1. Parameter values governing the OM were based on a stock
assessment for Atlantic herring Clupea harengus in the US
Northwest Atlantic Ocean (NEFSC (Northeast Fisheries Science
Center), 2018).

Parameter Description Value

M� Natural mortality 0.35
R� Mean recruitment 3 208 750
rR SD of log recruitment 0.84
rF SD of log fishing mortality 0.4
rY SD of log yield 0.1
rI SD of log survey index 0.5
q Catchability coefficient for survey 0.0000348

Consequences of misaligned stock assessment and population boundaries 3
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with a boundary that was proportionally too big relative to re-

spective OM areas (Figure 1).

The study design resulted in the evaluation of 75 scenarios.

For each scenario, a set of 500 simulations spanning 30 years each

were conducted to capture variability from process error in

recruitment and fishing mortality and observation error in catch

and the survey index of abundance (Table 1). Within each

OM area (i.e. PS), fish and fishing effort were assumed to be

homogenously distributed. Movement was assumed to occur in-

stantaneously at the beginning of the year, and local habitat was

Figure 2. Differences in (a) maturity, (b) growth, and (c) fishery selectivity between area 1 (red) and area 2 (blue) assumed in the OM. The
solid lines represent the level of heterogeneity assumed in simulations (base), which for maturity and growth corresponds to a 10% spatial
difference (area 1 relative to area 2) across ages. Sensitivity (sens) to the level of biological heterogeneity (maturity and growth) assumed in
OMs (non-solid red lines) was examined using spatial differences of 20, 35, and 50% (dashed, dot, and dash–dot lines, respectively). Spatial
differences in fishery selectivity were based on regional selectivity patterns for herring in the northwest Atlantic.

  

10% Area 1 + 100% Area 2 
20% Area 1 + 100% Area 2 
35% Area 1 + 100% Area 2 
50% Area 1 + 100% Area 2 

a b 

Area 1 (OM) Area 2 (OM) 

EM (area 1) 

EM (area 2) 

Figure 1. Stock population boundaries for the OM and alternative EMs (also referred to as “assessment areas”). The OM was specified as two
symmetric areas (area 1 and area 2), each representing a different PS defined by governing population dynamics depending on the scenario
(see Table 2). The EMs were informed by data that was either spatially coherent with the OM or that was spatially incoherent (misaligned by
the degree of boundary incoherence, p, of 10, 20, 35, or 50%) with the OM. Accordingly, the EM for area 1 (area 2) was always smaller (larger)
than the respective OM area, such that area 1a (no shading) represented the area 1 EM and area 1b (light shading) was incorrectly
incorporated into the area 2 EM.

4 A. M. Berger et al.
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assumed to govern biology such that fish moving across bound-

aries adopt area-specific biological parameters.

Operating model
The OM defined age-based (8 age-classes with age-8 being a plus

group) population dynamics for a single population with hetero-

geneity between two areas (Figure 1) that operated on an annual

time step. Total recruitment at age-1 for each year (y) and simu-

lation (s), Rs;y , for the entire population was assumed to vary

around a mean, R :

Rs;y ¼ Re�
R
s;y�

r2
R
2 ; �R

s;y � N 0;r2
R

� �
: (1)

The proportion of the total annual recruitment apportioned to

each area differed according to scenario but was invariant across

years and simulations within a given scenario. The maturity-at-

age ogive, mean stock weight at age, and mean catch weight-

at-age values were initially specified based on recently reported

values for Atlantic herring in the northwest Atlantic Ocean

[NEFSC (Northeast Fisheries Science Center), 2018], with altera-

tions imposed by spatial area for specific scenarios as part of the

study design (Figure 2). Within each scenario, maturities and

weights at age were constant.

Fish were subjected to a single fishing fleet with selectivity that

was year- and simulation-invariant and followed a logistic shape

that differed by area (Figure 2). Asymptotic selectivity at age was

used to approximate patterns typical of trawl gear. Fully selected

annual instantaneous fishing mortality rates by area (r), Fs;r;y ,

were specified as a linear increase for the first half of each time se-

ries followed by a linear decrease during the second half of each

time series, with process error applied across simulations for each

scenario, according to:

Fs;r;y ¼ F y e�
F
s;y�

r2
F
2 ; �F

s;y � N 0; r2
F

� �
; (2)

where F y describes the year-specific fully selected fishing mortal-

ity on the linear increase/decrease time series. The F y time series

began and ended at a minimum value of 0.07 and reached a

Table 2. The median relative error (%) in terminal year SSB (top) related to the underlying population segment, PS, (i.e. relative to the true
OM spatial areas) is shown by estimation area (A1¼ area 1; A2¼ area 2) and level of boundary incoherence (none, 10, 20, 35, and 50%) for
each spatial heterogeneity and connectivity scenario. The median relative error (%) in TAC (bottom) by assessment estimation sub-areas
(A1a, A1b, and A2) and the level of boundary incoherence (none, 10, 20, 35, and 50%) are also shown for each spatial heterogeneity and
connectivity scenario (see Figure 1 for further areal descriptions). Scenarios included combinations of spatial heterogeneity from maturity
(M), growth (G), selectivity (S), and connectivity via recruitment (Rec) and movement (Mov). The level of spatial heterogeneity assumed for
maturity, growth, and selectivity is shown in Figure 2. The proportion of the population recruiting to or moving from areas is identified by
the parenthetical (area 1:area 2).

Population segment (SSB) Degree of boundary incoherence

Heterogeneity Connectivity 0% 10% 20% 35% 50%

M G S Rec Mov A1 A2 A1 A2 A1 A2 A1 A2 A1 A2

� (50:50) (0:0) �0.7 �1.5 �9.8 16.5 �18.9 27.6 �32.3 43.2 �45.8 57.7
� (50:50) (0:0) �0.2 �1.5 �9.3 17.2 �18.3 28.9 �32.0 46.1 �45.6 60.7

� (50:50) (0:0) �0.6 �1.4 �9.5 14.4 �18.6 24.2 �32.1 40.3 �45.8 55.4
� � � (50:50) (0:0) �1.4 �1.5 �10.2 15.9 �19.2 27.6 �32.6 45.6 �46.2 62.4
� � � (60:40) (0:0) �1.4 �2.3 �10.3 22.3 �19.2 39.9 �32.6 66.1 �46.1 91.7
� � � (80:20) (0:0) �1.5 �2.3 �10.2 51.9 �19.2 97.8 �32.6 162.0 �46.1 229.3
� � � (50:50) (10:0) �19.6 8.0 �26.5 20.7 �33.7 26.8 �44.3 36.1 �55.1 44.9
� � � (50:50) (25:0) �42.8 6.0 �47.6 21.1 �52.4 33.3 �59.6 31.7 �66.8 36.5
� � � (50:50) (0:10) 11.2 �18.2 1.1 9.2 �9.1 31.1 �24.4 63.9 �39.8 97.5
� � � (50:50) (0:25) 10.3 �43.5 0.3 16.1 �9.8 63.9 �25.0 137.8 �40.2 212.5
� � � (60:40) (25:0) �42.7 7.2 �47.4 24.4 �52.3 29.3 �59.6 35.0 �66.8 39.5
� � � (60:40) (0:25) 9.9 �44.0 �0.1 14.8 �10.3 61.4 �25.6 132.4 �40.6 204.1

Assessment sub�area (TAC) 0% 10% 20% 35% 50%

M G S Rec Mov A1a A1b A2 A1a A1b A2 A1a A1b A2 A1a A1b A2 A1a A1b A2

� (50:50) (0:0) �0.2 – 0.0 �0.4 1.8 2.0 �0.1 2.8 2.8 0.1 3.0 3.0 �0.4 2.6 2.7
� (50:50) (0:0) 0.7 – 0.0 0.2 �5.4 3.2 0.3 �4.0 4.7 0.4 �2.9 6.0 0.2 �2.7 6.2

� (50:50) (0:0) 0.2 – 0.6 �0.1 �8.1 3.1 1.0 �5.3 6.4 0.3 �1.7 10.5 �0.6 �1.1 11.2
� � � (50:50) (0:0) 0.7 – 0.0 0.6 �15.0 4.5 0.1 �11.7 8.7 0.2 �8.3 12.9 0.6 �6.0 15.8
� � � (60:40) (0:0) 0.2 – 0.2 0.4 �38.1 12.2 0.1 �34.6 19.5 0.4 �29.9 28.3 0.4 �25.6 36.3
� � � (80:20) (0:0) 0.9 – 0.0 1.0 �69.4 41.2 0.5 �63.3 72.5 0.7 �55.1 113.9 0.1 �48.9 145.0
� � � (50:50) (10:0) �15.4 – 3.0 �16.0 65.6 4.7 �15.4 65.4 2.5 �15.0 61.3 �0.3 �15.7 58.6 �2.0
� � � (50:50) (25:0) �35.7 – 1.6 �35.9 264.0 1.3 �35.9 254.4 �2.2 �35.4 238.5 �6.8 �35.7 226.5 �10.1
� � � (50:50) (0:10) 14.0 – �16.2 13.2 �57.6 5.5 10.5 �53.4 18.4 11.1 �45.7 38.5 11.1 �40.6 52.2
� � � (50:50) (0:25) 12.1 – �39.2 11.3 �77.1 31.0 10.2 �70.1 80.1 10.2 �61.1 139.1 9.3 �54.3 183.3
� � � (60:40) (25:0) �36.4 – 2.7 �36.0 273.2 2.7 �35.3 262.0 �0.4 �35.6 248.5 �4.1 �35.1 233.7 �8.1
� � � (60:40) (0:25) 11.7 – �38.9 8.6 �77.8 30.3 9.2 �70.4 78.2 8.7 �61.8 134.1 8.3 �54.9 179.1
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maximum value of 0.60 in the middle of the time series. The min-

imum and maximum fishing mortality rates were similar to

extremes estimated for Atlantic herring in the northwest Atlantic

Ocean [NEFSC (Northeast Fisheries Science Center), 2018]. The

standard deviation (SD) of log fishing mortality (rF ¼ 0.4) was

consistent with the stock assessment [NEFSC (Northeast Fisheries

Science Center), 2018] and ensured that results were not driven

by unrealistically low variation in the fishing process.

Instantaneous natural mortality, �M , was set to 0.35 [NEFSC

(Northeast Fisheries Science Center), 2018] for all area, age, year,

and simulation combinations. Fish were assumed to die accord-

ing to an area-, age-, year-, and simulation-specific total instanta-

neous mortality rate, Zs,r,a,y:

Ns;r;aþ1;yþ1 ¼ Ns;r;a;y e�Zs;r;a;y ; (3)

Zs;r;a;y ¼ Fs;r;a;y þ �M ; (4)

where Fs;r;a;y equalled the product of Fs;r;y and fishery selectiv-

ity at age. For movement scenarios, the above abundance

equation was simply adapted by calculating the abundance

before movement for a given area, year, age, and simulation

from the abundance after movement in the previous year and

age because movement was assumed to occur instantaneously

at the beginning of each year. Catch, Cs,r,a,y, in each area was a

function of abundance and mortality following Baranov’s

catch equation:

Cs;r;a;y ¼
Fs;r;a;y

Zs;r;a;y
Ns;r;a;y 1� e�Zs;r;a;yð Þ; (5)

where N was abundance after movement (if movement occurred)

and was multiplied by area-specific catch weights at age, Wr,a, to

calculate yield (t), Ys,r,y:

Ys;r;y ¼
X8þ

a¼1
Cs;r;a;y Wr;a: (6)

Data generation
Data generated from each area of the OM were aggregated

according to fraction, p (or the degree of boundary incoher-

ence), for each set of EMs for each scenario. The reorganiza-

tion of area-specific OM data into disjoint EMs, through

the use of p, was intended to approximate conducting a stock

assessment using data from a spatial area that does not align

with the “true” spatial boundaries. Equivalently, fraction p can

be considered the proportion of OM1 data that was excluded

from EM1 (and thus included in EM2) for incoherent bound-

ary scenarios. This design necessarily implies that fish in each

area were assumed evenly distributed, or equivalently that the

degree of incoherence refers to the portion of the well-mixed

population rather than portion of area as framed throughout

the paper.

A survey index of abundance time series, fishery data, and

age compositions were generated for each simulation. An annual

survey index of abundance, Î s;r;y , was generated assuming area-

, year-, and simulation-invariant catchability, q, and asymptotic

selectivity at age, Sa (Table 1 and Figure 2):

Î s;r¼EM1;y ¼
P8þ

a¼1 1� pð ÞNs;r¼OM1;a;y Sa;r¼OM1
qe�

I
s;y�

r2
I
2 ; �I

s;y � N 0; r2
I

� �
;

Î s;r¼EM2;y ¼
P8þ

a¼1 pNs;r¼OM1 ;a;y þ Ns;r¼OM2 ;a;yð ÞSa;r¼OM2
qe�

I
s;y�

r2
I
2 ; �I

s;y � N 0; r2
I

� �
;

(7)

where N was abundance after movement and p was the degree of

boundary incoherence to be included in the EM. Annual total

yield observed with error, Ŷ s;y , from the fishery was combined

among areas in a similar way as for the survey indices:

Ŷ s;r¼EM1;y ¼ 1� pð ÞYs;r¼OM1;y e�
Y
s;y�

r2
Y
2 ; �Y

s;y � N 0;r2
Y

� �
;

Ŷ s;r¼EM2;y ¼ pYs;r¼OM1;y þ Ys;r¼OM2;yð Þe�
Y
s;y�

r2
Y
2 ; �Y

s;y � N 0; r2
Y

� �
;

(8)

Ŷ s;y ¼
X2

i¼1
Ŷ s;r¼EMi ;y : (9)

Observed age compositions for the fishery and survey, Ps,r,a,y,

were generated by drawing annual samples from a multinomial

distribution, with the annual proportions at age equal to true

proportions at age, and aggregated by EM area using p as previ-

ously described. Annual effective sample sizes were fixed at 100 to

provide relatively informative age-composition data while avoid-

ing unrealistically frequent occurrences of zero observations in

the age composition that can be produced with sample sizes de-

rived from iterative reweighting procedures commonly used in

stock assessments (Francis, 2011; Deroba et al., 2015).

Biological data included annual input weights at age, Ŵ s;r;a;y

(i.e. growth), and maturity at age, which were summarized as

catch-weighted mean values for each misaligned area in the EM:

Ŵ s;r¼EM1;a;y ¼ Ws;r¼OM1;a;y ;

Ŵ s;r¼EM2;a;y ¼
Ws;r¼OM1;a;y pYs;r¼OM1;yð Þ þ Ws;r¼OM2;a;y Ys;r¼OM2;yð Þ½ �

Ys;y
:

(10)

The catch-weighted mean maturity-at-age values were calcu-

lated as in (10) for weights at age, except with Ws,r,a,y replaced

with the area-specific maturity-at-age values. While the true age-

specific weight and maturity values were year-invariant, the

resulting catch-weighted mean quantities developed as data for

each misaligned EM were year-specific due to annual dependence

on the proportion of the catch coming from each area. Using a

catch-weighted approach to aggregate biological data assumed

that fish in each area were randomly distributed spatially and

sampled randomly (e.g. as in a portside sampling program ran-

domly sampling landings).

Estimation models
The EMs matched the population dynamics of the OM except

that each EM assumed a single-area, panmictic population,

whereas the OM was a single population with spatial heterogene-

ity. EMs were fit to generated data using maximum likelihood.

Standard lognormal likelihood components were used for fits to

the survey indices, Î y , and total annual yield, Ŷ y , with SDs set to

their respective OM values. A multinomial likelihood was used

for fits to fishery and survey age-composition data, with effective

6 A. M. Berger et al.
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sample sizes set to those used in the OM. Estimated parameters

included initial abundance at age in year 1 of the time series, an

underlying mean recruitment scalar, annual recruitment devia-

tions around the underlying mean, annual fully selected fishing

mortality, fishery and survey selectivity, and survey catchability.

All parameters were initialized at their correct (i.e. OM) values.

Following from the study design, each EM was fit to 500 gener-

ated datasets, each 30 years long, for each of the 75 scenarios. A

self-test consistency evaluation (sensu Deroba et al., 2015) was

performed prior to the evaluation of alternative scenarios using

the EM where assumptions and boundary coherence matched

that of the OM. All EMs that did not converge were tallied and

excluded from further analysis, including summarizing simula-

tion performance metrics.

Performance metrics
The performance of each scenario was summarized by calculating

bias [median relative error (MRE)] and risk (probability thresh-

olds) associated with each set of simulation runs. Specific defini-

tions of bias and risk were developed for each study objective (i.e.

relative to PSs, AAs, and assessment sub-areas).

Population segments
The MRE associated with the terminal year estimate of spawning

stock biomass (SSB) was used as a performance measure to de-

scribe estimation bias relative to the true heterogeneous PS SSB

for each simulation scenario.

MREPS
r ¼

SSBEM
r � SSBOM

r

SSBOM
r

: (11)

The MRE was calculated using the true SSB from area 1 and

the estimated value from EM1, while the true SSB from area 2 was

used with the estimated value from EM2. The MRE was also

calculated using the sum of the SSB estimates from each EM and

the system-wide true SSB (i.e. summed over both areas). The

interquartile range of terminal year SSB was used as a summary

measure of variability across simulations associated with each sce-

nario. Risk relative to the underlying PSs was characterized as the

proportion of spatially incoherent EM simulation runs that

exceeded 1 SD of the terminal SSB estimate from EM simulation

runs with spatially coherent boundaries. In effect, this definition

of risk quantified potential management concern related to bene-

fits that individual PSs provide (e.g. ecosystem service). Risk was

also quantified for different levels of precision tolerance [i.e. in-

creasing or decreasing the precision threshold, SD, using different

values for the coefficient of variation (C.V.)], as has been done at

regional fishery management councils (Ralston et al., 2011;

Privitera-Johnson and Punt, 2020) and within scientific advisory

bodies (e.g. ICES, 2017) to categorize overall levels of stock as-

sessment uncertainty and specify reference points. For example,

the uncertainty associated with terminal year SSB estimates is of-

ten used to characterize the precision of stock size information

being passed on to management, where more imprecise informa-

tion leads to larger precautionary buffers (i.e. reduces allowable

catch), thereby explicitly incorporating risk into management

action.

Assessment areas
Mean relative error (MRE) in the terminal year estimate of SSB

was also used as a performance measure to describe estimation

bias relative to the estimation area (or AA) amalgamated OM SSB

for each simulation scenario:

MREAA
r¼1 ¼

SSBEM
1 � SSBOM

1 1� pð Þ
� �

SSBOM
1 1� pð Þ

;

MREAA
r¼2 ¼

SSBEM
2 � SSBOM

2 þ SSBOM
1 p

� �� �
SSBOM

2 þ SSBOM
1 p

� � :

(12)

The degree of boundary incoherence, fraction p, was used to

amalgamate OM SSB to match the estimation area. This metric

evaluates amalgamated population sizes by area, but it ignores

potential localized harvest impacts to misaligned areas.

Assessment sub-areas
Mean relative error (MRE) in terminal year estimate of total al-

lowable catch (TAC) was used as a performance measure to de-

scribe estimation bias relative to the intersection between true

and misaligned component sub-areas (area 1a ¼ OM1 \ EM1,

area 1b ¼ OM1 \ EM2, and area 2¼OM2 \ EM2; Figure 1) for

each simulation scenario. This measure describes assessment-

based harvest impacts to PSs by area and sub-area (sAA) created

by boundary misalignment.

MREsAA
r¼1a ¼

TACEM
1 �

�
TACOM

1 ð1� pÞ
�

TACOM
1 ð1� pÞ

;

MREsAA
r¼1b ¼

TACEM
2

p

1þ p

� �
� ðTACOM

1 pÞ

TACOM
1 p

;

MREsAA
r¼2 ¼

TACEM
2

1

1þ p

� �
� TACOM

2

TACOM
2

:

(13)

The MRE associated with area-specific TAC provides an indi-

cation of the potential for over- and under-harvest. Simulation-

specific regional selectivity patterns and terminal year biomass at

age were used along with a fixed harvest rate (fully selected fishing

mortality ¼ 0.25) to calculate area-specific terminal year TAC.

The particular value assumed for the fishing mortality rate was ef-

fectively a scalar on TAC and, thus, was inconsequential because

MRE is a relative measure. Risk relative to sub-area-specific TAC

(i.e. assessment-driven management advice) was characterized as

the proportion of EM runs that exceeded 1 SD of the true area-

specific TAC as determined by OM output amalgamated by area

and sub-area created by boundary incoherence (eq. 13). This defi-

nition of risk was used to quantify potential management concern

related to localized harvest specifications.

Results
Area-specific EMs performed well (MRE at or near zero;

Figure 3) when model assumptions matched and spatial bound-

aries were perfectly aligned with OM areas (i.e. self-test scenario).

The mean convergence rate for each set of 500 simulation runs

was 99.4% across all 75 simulation scenarios (minimum ¼
90.0%). For all perfectly aligned scenarios, there was minimal bias

in system-wide terminal SSB (MRE ranged from �0.01 to 0.03),

as biases for EM1 (area 1) and EM2 (area 2) were nearly offsetting

Consequences of misaligned stock assessment and population boundaries 7
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in direction and magnitude. Therefore, results focus on mis-

matched area-specific results.

Population segments
Spatially incoherent population and management unit bound-

aries created bias in area-specific estimates of stock (PS) size rela-

tive to the true underlying PSs when population structure was

due to heterogeneity in maturity (M), growth (G), and selectivity

(S). As expected, bias generally increased with the degree of

boundary incoherence, averaging 612.9% MRE (at 10% bound-

ary incoherence) to 652.4% MRE (at 50% boundary incoher-

ence; Table 2 and Figure 3) across all scenarios (i.e. on average,

bias was about the same as boundary incoherence). For scenarios

with differences attributable to the source of heterogeneity (i.e.

M, G, S, and the combination of all three sources, MGS), the level

of boundary incoherence between the OM and EMs was the larg-

est driver of bias (near 20-fold increase in bias across the range of

boundary incoherence examined relative to differences attribut-

able to the source of heterogeneity alone; Table 2). The median

bias was smaller for area 1 compared to area 2 because all data

used in EM1 were sampled from area 1, whereas EM2 used a por-

tion of area 1 (p) and area 2 data. In general, bias was negative for

area 1, primarily reflecting the loss of SSB relative to OM1, and

was positive for area 2. The relationship between bias and degree

of boundary incoherence was largely linear for both areas, includ-

ing when all three sources were combined (MGS; Figure 3). The

interquartile range of SSB across simulation runs suggested SSB

for area 2 was about twice as variable on average as SSB for area

1, with variability increasing (decreasing) with the degree of

boundary incoherence for area 2 (area 1), and was slightly larger

when heterogeneity was due to differences in growth than when

formed by differences in maturity or selectivity alone

(Supplementary Table S1 and Supplementary Figure S1).

The addition of connectivity dynamics in the OM generally led

to larger EM discrepancies relative to underlying PSs.
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Figure 3. The median relative error of terminal year SSB is shown by area (area 1¼ red dashed line; area 2¼ blue dashed line) as related to
the underlying PS (i.e. true OM spatial areas) for each of five levels of boundary incoherence (none, 10, 20, 35, and 50%) per scenario set
(panels). The top row represents scenarios without connectivity (combinations of spatial heterogeneity from maturity M, growth G, and
selectivity S), while the second and third rows include scenarios with the addition of connectivity (via recruitment Rec and movement Mov).
The level of spatial heterogeneity assumed for maturity, growth, and selectivity is shown in Figure 2. The proportion of the population
recruiting to or moving from areas is identified by the parenthetical (area 1:area 2). Shading represents the 25th and 75th interquartile ranges
of relative error.

8 A. M. Berger et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsaa203/6043739 by N

O
AA C

entral Library user on 22 D
ecem

ber 2020

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaa203#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaa203#supplementary-data


Independent EMs not accounting for recruitment apportionment

(Rec) or movement (Mov) mostly led to an increase in median

bias in one area or the other at each level of boundary incoher-

ence (Table 2 and Figure 3) and more disparity in the variability

of terminal SSB between areas (Supplementary Table S1 and

Supplementary Figure S1). Unequal recruitment apportionment

(Rec) mostly affected area 2 (Figure 3), where the MRE was re-

lated to the level of disparity between areas and the degree of

boundary incoherence. This was a direct result of a larger propor-

tion of biomass being attributed to area 2 from area 1 when

boundaries were misaligned. The direction and proportion of

the stock moving had the largest effect on MREs across all scenar-

ios, with emigration resulting in negative bias and the rate of

movement either reducing (area 1) or exacerbating (area 2) the

effect of boundary incoherence (Figures 3). Variability was gener-

ally reduced in area 1 and enlarged in area 2 as the degree

of boundary incoherence increased (Supplementary Figure S1).

The main exception was movement scenarios depicting emigra-

tion from area 1 to area 2 where variability was relatively insensi-

tive to boundary incoherence (Supplementary Table S1 and

Supplementary Figure S1) due to the underlying mismatch

between the independent EMs (no connectivity) and the OM

movement dynamics driving population structure (and thus ex-

tensively violating EM assumptions of homogeneity). The near

concordance between combined recruitment and movement

scenarios and movement only scenarios indicate that movement

was a stronger driver of bias in terminal year SSB (Figure 3).

Risk associated with misinformed management relative to the

underlying true PSs appreciably increased with the degree of

boundary incoherence (Table 3). If, for example a 50% C.V. asso-

ciated with the terminal year biomass estimate was a management

decision threshold [e.g. linked to the size of an uncertainty buffer

between the overfishing limit (OFL) and the allowable biological

catch], the risk of being incorrect by more than one SD increases

up to 13-fold when boundaries are vastly misaligned (50%

incoherence) compared to when slightly misaligned (10% inco-

herence). Although measures of risk can be related to the level of

stochasticity assumed in the OM and parameter uncertainty

in the EMs, relative differences provide a robust indication while

absolute values should be considered minimums given simplifica-

tions inherent with simulations (Punt et al., 2015). For reference,

the C.V. associated with terminal year SSB from EM runs with

spatially coherent boundaries was 59% for area 1 and 57% for

area 2.

Sensitivity runs that increased the level of spatial heterogene-

ity associated with maturity and growth OM scenarios to levels

>10% (i.e. 20, 35, and 50%) led to area-specific characteristics

(Figure 4). There was almost no change in bias in area 1 with

increasing heterogeneity; however, uncertainty as characterized

by the interquartile range (Supplementary Figure S2) increased

with increasing heterogeneity and decreased with increasing

boundary incoherence. Bias in area 2 increased with increasing

boundary incoherence, but the rate of increase steepened

with higher levels of spatial heterogeneity, suggesting a multi-

plicative effect between spatial population structure and man-

agement misspecification of boundaries. Uncertainty in area 2

(Supplementary Figure S2) was more similar among levels

of heterogeneity than in area 1 and increased with boundary

incoherence.

Assessment areas
Bias relative to AA terminal year SSB was reduced compared to

bias associated with the underlying PS SSB (Figure 5) because

misaligned AAs effectively averaged over data from separate PSs,

thereby reducing the capability to explicitly manage unique com-

ponents of the population. Across all simulation scenarios, there

was generally minor AA bias in area 1, whereas in area 2 there

was increasing bias with the degree of boundary incoherence (up

to 2–24% depending on scenario when 50% incoherent). Thus,

estimation bias is particularly critical for AAs that encapsulate PS

boundaries (EM area 2 in this case) because resulting manage-

ment decisions (e.g. harvest rates) will be applied across different

PSs.

Assessment sub-areas
Incoherent population and management unit boundaries created

differing levels of harvest bias relative to sub-areas created by

boundary incoherence. In general, MRE trends in TAC across the

degree of boundary coherence (Table 2 and Figure 6) were similar

in direction and magnitude to MRE associated with true PS SSB

(Table 2 and Figure 3). The main exceptions were differences in

overall scale (MRE generally reduced for TAC) and increased er-

ror associated with area 1b (i.e. the estimation area encapsulating

the area of boundary incoherence) relative to area 1a (Figure 6).

Specifically, there was near zero bias (heterogeneity scenarios: M,

G, and S) or reduced bias relative to other sub-areas (connectivity

scenarios: Rec and Mov) associated with area 1a due to stock as-

sessment data being solely from the correct PS. In contrast, there

was considerable bias in estimated TAC associated with area 1b

and area 2, suggesting local over- and under-harvest relative to

true TAC given intended harvest rates. Bias in these areas was due

to the amalgamation of data across differing PSs used in the mis-

aligned EM (stock assessment) for each scenario. Although area-

specific bias was related to the level of boundary incoherence, al-

ternative forms of connectivity between PSs resulted in the largest

changes to bias among scenarios examined (Figure 6) and in-

creased disparity in the variability of TAC between sub-areas

(Supplementary Table S1 and Supplementary Figure S3).

Sensitivity runs that increased the level of spatial heterogeneity in

maturity and growth in the OM to levels greater than 10% (i.e.

20, 35, and 50%) had no influence on area 1a TAC and had the

effect of increasing error in area 1b (negative MRE) and area 2

(positive MRE) with increasing heterogeneity (Figure 4).

Risk associated with misinformed management relative to sub-

area-specific assessment-driven management advice was relatively

stable across the degree of boundary incoherence for a given level

of precision tolerance (C.V.) using scenario MGS (Table 3). This

insensitivity was a result of a near constant proportional change

between the variability in TAC across assessment runs and the de-

gree of boundary incoherence. The main exception was in area 1b

where variability proportionally decreased with size of assessment

misalignment, implying risk reduction (Table 3). Overall, risk

was highest in area 1b, followed by area 1a and area 2.

Discussion
Spatial structure is a key characteristic defining ecological bound-

aries (Strayer et al., 2003), yet management boundaries typically

do not fully complement important ecological transition points

within a stock or population, potentially leading to portions of

the same population being unassessed or assessed with incorrect

Consequences of misaligned stock assessment and population boundaries 9
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Table 3. Risk associated with using spatially incoherent models to estimate stock status (top) and TAC (bottom) are shown using spatial
scenario MGS (maturity, growth, and selectivity; see Figure 2 for details). For all panels, proportions are conditionally shaded (scale: 0–1) so
that darker boxes correspond to higher risk.

C.V.

Population Segment (SSB)

Area 1 Area 2

Degree of boundary incoherence Degree of boundary incoherence

10% 20% 35% 50% 10% 20% 35% 50%

10% 0.38 0.89 0.98 0.99 0.67 0.91 0.99 0.99
20% 0.05 0.38 0.83 0.94 0.30 0.66 0.91 0.98
30% 0.01 0.14 0.56 0.79 0.16 0.37 0.74 0.90
40% 0.00 0.05 0.29 0.60 0.09 0.21 0.53 0.77
50% 0.00 0.02 0.18 0.38 0.05 0.14 0.36 0.62
60% 0.00 0.01 0.08 0.27 0.04 0.09 0.24 0.46
70% 0.00 0.00 0.05 0.19 0.02 0.06 0.18 0.35
80% 0.00 0.00 0.03 0.12 0.01 0.04 0.13 0.25
90% 0.00 0.00 0.02 0.07 0.01 0.02 0.08 0.20
100% 0.00 0.00 0.01 0.05 0.01 0.01 0.05 0.16

C.V.

Assessment sub-area (TAC)

Area 1a Area 2

Degree of boundary incoherence Degree of boundary incoherence

10% 20% 35% 50% 10% 20% 35% 50%

10% 0.68 0.68 0.68 0.68 0.65 0.63 0.61 0.62
20% 0.44 0.43 0.43 0.43 0.37 0.37 0.39 0.41
30% 0.24 0.24 0.24 0.24 0.22 0.21 0.21 0.24
40% 0.15 0.15 0.15 0.15 0.12 0.12 0.12 0.14
50% 0.09 0.09 0.09 0.10 0.07 0.06 0.07 0.09
60% 0.06 0.06 0.06 0.07 0.05 0.04 0.04 0.05
70% 0.05 0.04 0.04 0.05 0.03 0.02 0.02 0.03
80% 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02
90% 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01
100% 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01

C.V.

Area 1b

Degree of Boundary Incoherence

10% 20% 35% 50%

10% 0.71 0.70 0.64 0.63
20% 0.49 0.44 0.39 0.39
30% 0.30 0.30 0.27 0.23
40% 0.21 0.19 0.13 0.11
50% 0.11 0.10 0.07 0.06
60% 0.07 0.06 0.04 0.04
70% 0.03 0.03 0.03 0.02
80% 0.03 0.02 0.01 0.02
90% 0.01 0.01 0.01 0.01
100% 0.01 0.01 0.00 0.00

Risk related to heterogeneous PSs (top) is defined as the proportion of spatially incoherent EM runs that exceed 1 SD of the terminal SSB estimate from EM
runs with no boundary incoherence for different levels of precision tolerance (i.e. C.V.). For example, higher values indicate increased risk of specifying stock sta-
tus incorrectly relative to the true spatial PS due to mismatched areal boundary lines that create non-homogeneity between population units (i.e. boundary in-
coherence). The mean C.V. associated with EM runs with coherent boundaries was 59% for area 1 and 57% for area 2. Alternative C.V.s are shown to provide a
broader risk profile perspective and because measures of precision are related to simulation experiment specifications about observation and process errors.
Risk related to area-specific assessment-driven management advice (TAC; bottom) is defined as the proportion of EMs that exceed 1 SD of the true assessment
sub-area-specific TAC as determined by OMs.
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assumptions (e.g. homogenous unit). Furthermore, non-

stationary environmental processes that impact habitat suitable

for growth, survival, and reproduction can alter spatial structur-

ing of population units such that these portions increase or de-

crease over time leading to stock assessment bias (Szuwalski and

Hollowed, 2016; Kerr et al., 2017). Multi-species fisheries can

reinforce the use of misaligned assessment boundaries when ac-

companied by common management boundaries for a suite of

species that are not closely linked to stock boundaries for any of

them. Management procedures inherently include an explicit

treatment of boundaries that define the resource units that regu-

lations act upon, and research evaluating the effects of incorrectly

Figure 4. Simulation sensitivity to the underlying level of biological heterogeneity assumed between OM areas. Spatial differences in the
maturity and growth of 10% (base) were assumed in the main set of simulations. Sensitivity (sens) in the median relative error for SSB is
shown relative to area 1 and area 2 PSs (true OM spatial areas; left panels) and for TAC relative to assessment sub-areas (1a, 1b, and 2)
formed by the intersection of assessment and population areas (where the true OM TAC was amalgamated by sub-areas; right panels) for 20,
35, and 50% spatial differences in maturity and growth. Sensitivity evaluations were performed using scenario MGS.

Consequences of misaligned stock assessment and population boundaries 11

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsaa203/6043739 by N

O
AA C

entral Library user on 22 D
ecem

ber 2020



delineated boundaries for spatially structured populations is es-

sential to fully understand the implications of spatial fisheries

management plans (Punt et al., 2015).

In this study, a spatial simulation–estimation framework was

used to evaluate biases and associated risks with boundary inco-

herence between areas that define population structure and man-

agement units when assessing a resource. Results highlight the

importance of regional management considerations, especially

when fishing mortality is disproportionate to vulnerable biomass

among management areas, demographic data (e.g. growth and

maturity) are not homogenous within management areas, or con-

nectivity (via recruitment or movement) exists among manage-

ment areas. Smaller, though not inconsequential, differences in

bias occurred across levels of boundary incoherence for scenarios

that used growth, maturity, and selectivity as sources of spatial

heterogeneity compared to scenarios that additionally included

connectivity between areas. There was less contrast in results

across heterogeneous patterns of movement, growth, and

selectivity, given the designed spatial concordance among life his-

tory parameters and selectivity. For example, fish from area 1

grew faster, matured earlier, and thus were selected by the fishery

sooner than fish from area 2, and therefore, these traits by defini-

tion had synergistic effects on the population even when applied

independently. Nonetheless, management advice in the form of

TAC specifications was biased, with the level of bias dependent

on assessment sub-area (i.e. local depletion or local underutiliza-

tion) and the degree of boundary incoherence between assess-

ments and spatial structures.

From a stock assessment perspective, misaligned boundaries

effectively cause an averaging of potentially important population

processes across the management domain, and bias can be exacer-

bated if there is “demographic leakage” between AAs due to the

unknown presence of unidirectional movement or high-/low-

productivity areas. These situations create barriers to successful

management such as increased risk for local depletion, inappro-

priate allocations of catch, loss of sustainable yield, and overall

Figure 5. The median relative error of estimated terminal year spawning biomass is shown relative to PS (true OM spatial areas; red) and by
AA (true OM amalgamated by estimation area; blue) for each of five levels of boundary incoherence (none, 10, 20, 35, and 50%) and areas (1
and 2). Box plots represent the consolidation of MREs across all heterogeneity and connectivity scenarios (see Table 2 for further scenario
details). Box plots are configured with a within box bold line (median), box height (25th and 75th percentiles), whisker length (1.5 times the
interquartile range between the median and the upper or lower box height), and outliers beyond the whisker length (points).
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biased estimates informing decisions. There are a growing num-

ber of examples, such as Bluefin tuna (Thunnus thynnus; Kerr

et al., 2017), Pacific hake (Merluccius productus; Malick et al.,

2020), rockfishes (McGilliard et al., 2015), and northeastern

Pacific sablefish (Anoplopoma fimbria; Kapur et al., 2020), that

suggest situations similar to those evaluated in this study are not

uncommon and where boundary incoherence has the potential to

deleteriously affect management procedures. For example, Cadrin

et al. (2019) showed that naive, closed-population assessment

models conforming to geographic management areas for Atlantic

Bluefin tuna result in biased estimates of recruitment relative to

stock biological-unit assessment models. The latter approach

reassigned data collected from mixed-stock fisheries according to

stock composition, rather than by management area that can con-

tain multiple populations (e.g. Hintzen et al., 2015).

Risk, defined in this study as the probability of exceeding

bias thresholds, relative to individual PS stock size given different

levels of risk tolerance (see Table 3), increased with the degree

of boundary incoherence to levels that substantially biased area-

specific harvest management decisions (e.g. TACs).

Operationally, increased risk can translate into management deci-

sions that expand precautionary harvest buffers. For example, the

US Pacific Fishery Management Council increases the buffer be-

tween the OFL estimated by the stock assessment and the allow-

able biological catch as a result of scientific uncertainty in the

OFL, where the buffer size is often related to the C.V. associated

with the terminal year SSB estimate. Related, many US regional

fishery management councils apply a “p-star” approach that addi-

tionally incorporates management risk tolerance into the buffer

size (Prager et al., 2003; Shertzer et al., 2008). Several other man-

agement procedures have been developed worldwide to induce

precautionary harvest measures as a result of scientific uncer-

tainty (see, for example Punt et al., 2012). Risk was exemplified in

this paper using a representative scenario (MGS) without

Figure 6. The median relative error for TAC is shown by assessment sub-area (area 1a ¼ red dashed line; area 1b ¼ maroon dash-dot line;
area 2¼ blue dashed line) for each of five levels of boundary incoherence (none, 10, 20, 35, and 50%) per scenario set (panels). The top row
represents scenarios without connectivity (combinations of spatial heterogeneity from maturity M, growth G, and selectivity S), while the
second and third rows include scenarios with the addition of connectivity (via recruitment Rec and movement Mov). The level of spatial
heterogeneity assumed for maturity, growth, and selectivity is shown in Figure 2. The proportion of the population recruiting to or moving
from areas is identified by the parenthetical (area 1:area 2). Shaded plots (grey; top row) indicate a different y-axis scale. Time series shading
represents the 25th and 75th interquartile ranges of relative error. Assessment sub-areas are delineated by the intersection of stock
assessment and PS areas, where the true OM TAC was amalgamated by sub-areas.

Consequences of misaligned stock assessment and population boundaries 13
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connectivity. However, estimating stock status when connectivity

dynamics are unknown or ignored would predominantly (though

perhaps not exclusively given the context of the situation) in-

crease the risk associated with using spatially incoherent models

(Goethel and Berger, 2017).

The fact that the system-wide results were effectively unbiased

coincides with recent work with stock structure defined as a single

population with spatial heterogeneity (Goethel and Berger, 2017;

Bosley et al., 2019) and suggests that even complete ignorance of

spatial structure needs not necessarily result in biased assessment

outcomes and poor catch advice; “two wrong assessments can

make a right”, if maintaining population heterogeneity and

avoiding localized depletion are not of concern. Reaping the ben-

efits of this result, however, has several requirements that are

seemingly unlikely to be met. For example, the catch of fish from

each area would have to be proportional to their frequency of oc-

currence within the area defined for the EM. Otherwise, the dis-

proportionate mortality would not be accounted for in a

panmictic EM, nor would the demographic data (e.g. weights and

maturities at age) be reflective of the fish within the EM bound-

ary. This requirement might be achieved if fish from each area are

randomly mixed when they are harvested, or if fishing occurs ran-

domly in space, but this is rarely the case (Guan et al., 2013). The

very existence of spatial structure or heterogeneity suggests that

fish from different areas are unlikely to be randomly mixed, and

catch is unlikely to be random in space for a variety of reasons,

such as distance from port or management measures that allocate

quotas spatially [NEFSC (Northeast Fisheries Science Center),

2018; Bosley et al., 2019; Hanselman et al., 2019]. The chances of

achieving unbiased system-wide results, however, could be im-

proved through thoughtful catch allocation schemes that do not

increase the chance of disproportionately harvesting fish from

one area or another. Likewise, sampling designs that sample har-

vested fish in a spatially representative fashion will improve the

chances that demographic data reflect that of the EM boundary.

Also, assessments conducted separately on multiple areas of the

same population are often handled by different agencies (e.g.

countries). In such transboundary cases, cooperative agreements

among regional assessment and management bodies can help en-

sure proper sampling and the aggregation of fishery data (e.g. in

mixed-stock fisheries), catch distribution, and the development

of EMs with non-overlapping boundaries that cover the entire

population [NEFSC (Northeast Fisheries Science Center), 2017;

Song et al., 2017; TRAC (Transboundary Resources Assessment

Committee), 2018; Cadrin et al., 2019].

Despite a growing number of studies highlighting how specific

spatial stock assessment procedures impact management (e.g.

Punt et al., 2015; Berger et al., 2017b; Cadrin, 2020), none have

explicitly evaluated how disconnected management and ecologi-

cal boundaries need to be in order to adversely affect manage-

ment advice (e.g. bias due to boundary incoherence � variance

of estimate). Punt et al. (2015) investigated how different stock

assessment configurations performed when presented with spa-

tially heterogeneous fishing and biological patterns, and they in-

dicated that estimation performance would have been further

degraded if unit boundaries would have been misaligned with

simulated patterns. The use of EMs that did not account for un-

equal recruitment apportionment or movement in this study led

to biased results and increased risk for local depletion (also see,

for example Ying et al., 2011); however, the level of bias consider-

ably worsened as a result of boundary incoherence (up to a

twofold change in SSB MRE and a onefold change in TAC MRE

for every 1% increase in boundary incoherence between areas).

Undoubtedly, some degree of boundary incoherence will always

be present given transitioning environmental and oceanographic

gradients and the resulting dynamic nature of marine fish popula-

tions. The challenge will be to optimize ongoing collection of eco-

system monitoring data to minimize risk and adapt to change for

single-species management plans, while concomitantly being cog-

nizant that units defined for the management of multi-species

fisheries or stock complexes may require additional measures if

drivers of spatial heterogeneity are not congruent.

Dynamic ocean management (DOM) is an emerging paradigm

that attempts to address such challenges by calling for rapid,

adaptive management action in space and time in response to

current ocean and fishing conditions using real-time monitoring

data (Maxwell et al., 2015). The ability to produce reliable short-

term species distribution (Kaplan et al., 2016) and productivity

(Tolimieri et al., 2018; Haltuch et al., 2020) forecasts using re-

gional oceanographic modelling systems is improving. Such fore-

casts can act as predictive components to DOM, which is

advantageous when management processes that are required to

shift management-unit boundaries (or reallocate harvest between

areas) impose time lags on adaptive change. Furthermore, DOM

can be a catalyst for implementing ecosystem-based fisheries

management and understanding connections among ecosystem

components. Toonen et al. (2011) suggest that generalized ecosys-

tem boundaries based on geographic proximity, taxonomy, or life

history characteristics do not improve understanding of connec-

tivity and thus help little with defining spatial management areas

(e.g. marine protected areas; McGilliard et al., 2015). As techno-

logical advances in monitoring improve and data assimilation

and throughput are further streamlined, we predict that the prin-

ciples supporting DOM will be further examined (e.g. through

management strategy evaluation) and transition from research to

operational pathways to develop regulatory measures at spatial

scales in tune with changing ocean conditions (e.g. climate

change) and ecosystem-level objectives.

Several assumptions and simulation scenario refinements were

made to ensure the study design remained tractable, while still

targeting study objectives. For example, we limited our scope to

one type of population structure: a single population with hetero-

geneity. Although perhaps the most commonly acknowledged

form of population structure in applied stock assessments, results

are likely sensitive to other forms of population structure such as

metapopulation (Ying et al., 2011; Kerr et al., 2017; Bosley et al.,

2019) or natal homing (Goethel and Berger, 2017) that are char-

acterized by different recruitment and movement dynamics. The

assumption of population-specific productivity (OM1 more pro-

ductive then OM2) when combined with the direction of bound-

ary incoherence (i.e. misaligned EM2 was always supplemented

with data from the more productive area, OM1) used in this study

resulted in slightly higher absolute levels of bias as compared to

the opposite case (OM1 less productive than OM2) but was gener-

ally inconsequential for overall trends and relative scenario com-

parisons. Risk profiles (as shown in Table 3) are related to the

level of process and observation error assumed in the simulation–

EM framework. Even though these assumptions influenced abso-

lute levels of risk, relative changes in risk across scenarios

remained comparatively robust. Future work should consider the

addition of spatiotemporal boundary incoherence, such as would

result from changing environmental conditions or population
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dynamic regimes, to complement the stationary levels of bound-

ary incoherence examined in this study. Individual-based models

could also prove useful to examine the consequences of simulat-

ing spatially discrete weight-at-age and maturity-at-age observa-

tions as was done in this study, rather than modelling these as

continuous processes linked across space through movement.

Simulations also assumed that the distribution of fish was ho-

mogenous within each PS (i.e. OM area), and fully selected fish-

ing mortality was homogenous across areas with random annual

deviations. Although these assumptions are common in popula-

tion or stock unit assessments, the impact on results if substan-

tively violated could be dramatic and is a topic for future

research.

Understanding spatial population structure is a precondition

for sustainable management (Cadrin, 2020). Ultimately, spatial

management procedures need to consider the population compo-

nents (e.g. spawning or harvestable portions of the stock) of soci-

etal interest that require management action given fishery

objectives and associated risk profiles. Fishing pressure, biological

constraints, and environmental gradients are never static through

time, which necessitates adaptive management procedures (in-

cluding the definition of management unit boundaries them-

selves) to tactically address shifting distributions and altered

population dynamics through best practices (Kerr et al., 2017).

When large-scale shifts are likely to occur (e.g. climate change),

transboundary approaches that include DOM concepts to recon-

struct boundaries in an adaptive way (i.e. dealing with the

“boundary paradox”; Song et al., 2017) warrant more attention,

as do fine-scale species distribution modelling approaches that

may reduce the burden of incorrect boundary assumptions be-

tween PSs (Cao et al., 2020). Directed studies and due consider-

ation of critical PSs, fishing patterns, political boundaries,

spatially explicit models, and transboundary dynamic manage-

ment options would undoubtedly reduce boundary-related bias

and risk, as would closely coordinated management among

neighbouring management units that function across stock or

population-segment boundaries. Ultimately, the establishment

and periodic re-examination of fisheries management units needs

to consider the spatial scales of concern as reflected by manage-

ment objectives, followed by performance testing management

strategies of which include the development of stock assessment

models that sufficiently reflect key spatial components of the pop-

ulation and fishery (Cadrin, 2020).

The data underlying this article were computer generated using

open source programming code available on github at https://github.

com/KateBoz/SPASAM/tree/master/Management_Boundaries, last

accessed 24 June 2020. Many of the population dynamic and fish-

ery parameters governing generated datasets were based on a re-

cent Atlantic herring stock assessment for the northwest Atlantic

Ocean [NEFSC (Northeast Fisheries Science Center), 2018].
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Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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